When Semantic Language Resources Meet Cognitive Systems

Saturday 31 May 2014

Presenters:
Katerina Pastra and Dimitris Mavroeidis
Semantic language resources are increasingly being used beyond language technology applications to computer vision ones (e.g. large scale object recognition in Images-augmented WordNet, ImageNet) and cognitive robotics (for verbal interaction with humans and for verbalisation of visual scenes). This is the modern manifestation of a long-standing quest in Artificial Intelligence, regarding the integration of language with other modalities (images, gestures, body movements), or to put it more generally, the integration of symbolic and sensorimotor representations. Multimedia ontologies, collections of labelled images or video keyframes and knowledge-bases have appeared in different strands of Artificial Intelligence (AI) research. The automatic correlation of language and the denoted sensorimotor experiences has been a major challenge which is commonly known as the Semantic Gap problem.

On the other hand, there is growing experimental evidence that language is tightly related to perception and action. From Quillian’s view of semantic memory as a lexical network accessed through a spreading activation of knowledge, modern neuroscience provides new evidence on the structure of semantic memory and points to the fact that semantic information is multisensory, multimodal and distributed. Intelligent multimedia systems, become more and more informed by experimental research on how the human brain works, with the aspiration that a simulation or transfer of mechanisms from the human brain to artificial agents will be more promising in terms of scalability and generalisation. In such research landscape, semantic language resources need to inform and be informed systematically by Cognitive Systems Research.

This tutorial aims to provide a comprehensive overview of semantic language resources, from a new, interdisciplinary perspective: that of cognitive science. In doing so, the tutorial will relate semantic language resources with the evolving field of Cognitive Systems, pointing to needs, challenges and future directions of research. Furthermore, it will familiarise the audience with new types of semantic resources that integrate language with vision and action, i.e. resources that correlate language with images, and motoric representations of actions. The cognitive underpinnings of semantic language resources and their integration with non-verbal modalities will be elaborated through reference to the latest theories and experimental findings on how the human semantic memory works. A case study of a multimodal semantic network for cognitive systems will be presented (the PRAXICON), whose structure is corroborated by experimental findings on how the human brain works and a practical, hands on experience with the resource will be provided to the participants.
Tutorial Description - Outline

In the first part of the tutorial, we will position semantic language resources within intelligent multimedia systems and cognitive systems, elaborating on their current and potential contribution and presenting the challenges one faces in employing them in cognitive robotics, cognitive vision, and other intelligent multimedia system applications.

In the second part, we will give an overview of state-of-the-art semantic language resources, ranging from computational semantic lexicons to common-sense knowledge-bases. We will provide a comparative view of a number of semantic language resources that will comprise:

- profiling of the resources (developers, dates, languages involved, size, interfaces, links to other resources, applications)
- methodology used for their development, and
- contents: semantic relations covered (ranging from lexical semantic relations to conceptual relations such as temporal inclusion, cause, effect, goal, entailment), inclusion of facts or common sense assertions, instance vs. class distinctions, terms, domain, affect, word sense distinctions, figurative language coverage, links to Ontologies.

Furthermore, verbal and non-verbal information coupling in semantic language resources for addressing the different challenges in Cognitive Systems research will be presented. This coupling goes beyond labelled image collections (e.g. the Pascal Images Database), small scale labelled motion capture databases, multimedia ontologies, multisensory and multimedia corpora (e.g. the POETICON corpus) and has taken the form of an extension of known semantic language resources (e.g. the ImageNet resource which couples an image database with WordNet).

In the third part of the tutorial, we will present the cognitive underpinnings of semantic resources, starting from Quillian's lexical semantic networks and the underlying model on how semantic memory works, to state of the art theories and experimental findings on the structure and contents of semantic memory. The neuroscience perspective will point to directions in developing semantic resources for cognitive agents, which has been materialized through the PRAXICON, a multisensory semantic network. A live demonstration of the PRAXICON and a hands-on training session will conclude the tutorial.

Part I. Introduction to Cognitive Systems from a Language Perspective

- From Intelligent Systems to Multimedia Systems, to Cognitive Systems
- Applications and Needs
- The role of Semantic Language Resources in Cognitive Systems
- The Semantic Gap Problem

Part II Profiling Semantic Language Resources from a Cognitive Perspective

- Types (Semantic Lexica, Common Sense Knowledge Bases, Ontologies)
- Methodologies used for their development
- Contents: focus on semantic relations
- Extension trends & Cross-Resource Interfacing trends
• Verbal and Non-verbal Symbiosis in Semantic Resources

Part III. The Cognitive Underpinnings of Semantic Resources

• From Semantic Networks to Semantic Memory
• How can Neuroscience inform semantic language and/or multimodal resource development?
• A case study & hands-on exploration of a computational semantic memory for cognitive systems: The PRAXICON
When Semantic Language Resources Meet Cognitive Systems

Katerina Pastra and Dimitris Mavroeidis
Cognitive Systems Research Institute (CSRI) & Institute for Language and Speech Processing (ILSP)
Athens, Greece

Tutorial Outline and Schedule

9:00 – 9:30 Introduction to Cognitive Systems
 • From Intelligent Multimodal Systems to Cognitive Systems
 • Applications, Needs and Challenges
 • The role of Semantic Language Resources (SLRs)

9:30 – 10:30 Profiling SLRs from a Cognitive Perspective
 • Types – Methodologies – Contents – Trends - Interfacing

10:30 – 11:00 Coffee Break

11:00 – 11:15 Verbal and non-Verbal Symbiosis in SLRs

11:15 – 12:30 Cognitive Underpinnings of SLRs
 • From Semantic Networks to Semantic Memories
 • How could Neuroscience inform SLR development?
 • Case Study: The PRAXICON

12:30 - 13:00 The PRAXICON – hands on session
Introduction to Cognitive Systems

• From Intelligent Multimodal Systems to Cognitive ones

• Applications, Needs and Challenges
 → the Semantic Gap problem
 → the Symbol Grounding problem

• The role of Semantic Language Resources (SLRs)
 → reaching towards Perception and Action

The AI quest for ... Intelligence

• The two-fold objectives of Artificial Intelligence (AI):

 a) The Engineering Objective:
 construction of machines that do intelligent things

 b) The Cognitive Objective:
 use of computational modeling for studying the human brain (mental faculties)

Note the interrelation: the definition of intelligence and identification of mechanisms involved, determines the methodology to be followed in constructing an intelligent machine
Intelligence as approached by AI paradigms (1)

- Intelligence is achieved through operations on symbolic structures (Symbolic AI)

Related to Newell's and Simon's 1979 physical symbol system hypothesis that considered a symbolic system to be the necessary and sufficient condition for exhibiting intelligence (see review in Luger, 2002).

Explicit representations, search algorithms and heuristics for choosing among alternative solutions are all basic components of symbolic approaches. Strong AI approaches hold that a symbol system can provide a full account of intelligence regardless its implementation medium.

Intelligence as approached by AI paradigms (2)

Intelligence Mechanisms involve:

- Adaptation & learning (Emergent or Biologically inspired AI, see review in Boden 1995)

intelligence emerges from dynamic patterns of activity and interaction with the real world

Cf. Connectionism, fuzzy logic, evolutionary computation...
Intelligence as approached by AI paradigms (4)

- Situated and Embodied AI

Essences of Intelligence (Brooks 1991, Brooks et al. 1998):
- social interaction
- sensorymotor experience
- perceptual integration

Sensors and physical coupling of the machine with the world through interaction are the *sine qua non* features of an intelligent system, while representation amounts to the accumulation of the system states, which is "meaningless without interaction with the world" (Brooks et al. 1998).

Though essential for complex behaviours and tasks, symbols are just part of the intelligence story which needs to incorporate embodied AI notions too (Anderson, 2003; Chrisley, 2003)

The AI quest for...Intelligence

“We may hope that machines will eventually compete with men in all purely intellectual fields. But which are the best ones to start with? Even this is a difficult decision. Many people think that a very abstract activity, like the playing of chess, would be best. It can also be maintained that it is best to provide the machine with the best sense organs that money can buy, and then teach it to understand and speak English. This process could follow the normal teaching of a child. Things would be pointed out and named, etc. Again I do not know what the right answer is, but I think both approaches should be tried.”

(Turing 1950, p.460). [emphasis not in the original text]
AI paradigm evolution and Cognitive Science

- From Cognitivism: Cognition as Information processing, symbolic computation--rule-based manipulation of symbols.
 - to Emergence: Cognition as the result of dynamic Interaction with the world
 - to Enactivism: (extending Situated Cognition, & Embodied Cognition); Cognition affects & is affected by sensorimotor interaction with the environment; knowledge is constructed this way

From Intellimedia to Cognitive Systems

- from SHRDLU (Winograd ´72) to conversational robots of the new millennium (e.g. Roy et al. 2003)

→ diverse AI areas and applications in which a number of cognitive skills and abilities are needed and actually integrated, from Multimedia Information Retrieval to Robotics (Pastra and Wilks 2004), e.g.
 - Audiovisual processing
 - Human Machine/Robot Interaction
 - Cognitive Robotics
Challenges

→ How does language relate to sensorimotor interaction with the world? What is its role in knowledge construction?

← Cf. the Symbol Grounding Problem (Harnad, 1990) and
← Cf. the Semantic Gap Problem (Hauptman, 2008)

Any Role for SLRs?

→ SLRs provide information on lexical concepts. Are they sufficient for representing embodied concepts?

If one was to bridge the semantic gap between sensorimotor experiences and language, and ground one to another, would state of the art SLRs be useful? If not, what kind of changes would be necessary?
Issues in using SLRs in grounding

→ What will grounded lemmas be like?
 1-word? Multi-word? Word-centric? Sensorimotor representation – centric?

→ How will they be organised?

→ How specific or general should they be?

→ What kind of relations between entries/lemmas should be captured?

Profiling SLRs from a Cognitive Perspective

- Types
- Methodologies
- Contents
- Trends
- Interfacing

Booklet with detailed tables per resource available at: http://www.csri.gr/downloads
Types of SLRs

- Lexical Semantic Relations
- Conceptual Relations
- Morphological Relations
- Syntactic Relations

Types of SLRs (2)

- traditional dictionaries
- computational lexicons
- computational semantic lexicons
- common-sense knowledge bases (facts)
- ontologies and domain models

Categorization and story-telling...to learn / organise the world...
Profiling (1)

<table>
<thead>
<tr>
<th>Institution</th>
<th>Project</th>
<th>Developer(s)</th>
<th>Date</th>
<th>Language(s)</th>
<th>Size</th>
<th>Interface(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish-Italian PAU</td>
<td>PAU</td>
<td>Prof. A. Moreno</td>
<td>2003</td>
<td>Spanish-Italian</td>
<td>114,711 propositions annotated</td>
<td>resource available for downloading</td>
</tr>
<tr>
<td>Berlin University of Technology</td>
<td>Prof. B. Dauelschmidt</td>
<td>Prof. B. Dauelschmidt</td>
<td>2004</td>
<td>German</td>
<td>409 verb senses, classification on 678 first senses, 481 additional senses expanded with another 65 senses by human and 806, 2004, and another 48 in different subject areas</td>
<td>resource available for downloading and Unified Verb Index interface</td>
</tr>
<tr>
<td>University of Southern California</td>
<td>Prof. C. Olivares</td>
<td>Prof. C. Olivares</td>
<td>2004</td>
<td>Spanish, English</td>
<td>10,000 verb parts</td>
<td>online interface</td>
</tr>
<tr>
<td>New Mexico State University</td>
<td>Prof. D. Newman</td>
<td>Prof. D. Newman</td>
<td>1995-2000</td>
<td>Spanish, Japanese, Russian languages</td>
<td>10,000 verb parts</td>
<td>online exploration - broker 364</td>
</tr>
</tbody>
</table>

Profiling (2)

<table>
<thead>
<tr>
<th>Institution</th>
<th>Project</th>
<th>Developer(s)</th>
<th>Date</th>
<th>Language(s)</th>
<th>Size</th>
<th>Interface(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanford University</td>
<td>Prof. E. Ebert</td>
<td>Prof. E. Ebert</td>
<td>1995-1999</td>
<td>English</td>
<td>114,711 propositions annotated</td>
<td>resource available for downloading</td>
</tr>
<tr>
<td>Berlin University of Technology</td>
<td>Prof. B. Dauelschmidt</td>
<td>Prof. B. Dauelschmidt</td>
<td>2004</td>
<td>German</td>
<td>409 verb senses, classification on 678 first senses, 481 additional senses expanded with another 65 senses by human and 806, 2004, and another 48 in different subject areas</td>
<td>resource available for downloading and Unified Verb Index interface</td>
</tr>
<tr>
<td>University of Southern California</td>
<td>Prof. C. Olivares</td>
<td>Prof. C. Olivares</td>
<td>2004</td>
<td>Spanish, English</td>
<td>10,000 verb parts</td>
<td>online interface</td>
</tr>
<tr>
<td>New Mexico State University</td>
<td>Prof. D. Newman</td>
<td>Prof. D. Newman</td>
<td>1995-2000</td>
<td>Spanish, Japanese, Russian languages</td>
<td>10,000 verb parts</td>
<td>online exploration - broker 364</td>
</tr>
</tbody>
</table>
Profiling (3)

<table>
<thead>
<tr>
<th>Resource</th>
<th>Main Developers</th>
<th>Institution</th>
<th>Date</th>
<th>Languages</th>
<th>Size</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Mind Project</td>
<td>P. Singh</td>
<td>MIT - Media Lab</td>
<td>2000-2002</td>
<td>EN</td>
<td>20K Korean, 20K English</td>
<td>"OpenMind Common Sense Ontology (OMCO), TEDS"</td>
</tr>
</tbody>
</table>

- Project aims to collect and translate knowledge for Korean, Japanese, Chinese, and others into a language that can be translated into English.

Profiling (4)

<table>
<thead>
<tr>
<th>Resource</th>
<th>Main Developers</th>
<th>Institution</th>
<th>Date</th>
<th>Languages</th>
<th>Size</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyc</td>
<td>D. Leavitt</td>
<td>CycCorp</td>
<td>1984 (to date)</td>
<td>EN</td>
<td>120K facts, 100K axioms</td>
<td>"CycKnowledgeBase (CycKB)"</td>
</tr>
</tbody>
</table>

- Project aims to build a large knowledge base in various languages.
Methodologies

<table>
<thead>
<tr>
<th>Resource</th>
<th>Language theory-based (manually crafted)</th>
<th>Corpus-based (auto or semi-auto extraction)</th>
<th>Experimental Psychology Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>WordNet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIMPLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VerbOcean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VerbNet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FrameNet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ConceptNet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EventNet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MindNet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ThoughtTreasure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mikrokosmos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SLRs - Contents

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WordNet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parole -SIMPLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VerbOcean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VerbNet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FrameNet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ConceptNet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EventNet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MindNet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ThoughtTreasure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mikrokosmos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SLR Content Analysis Example: WordNet (WN)

<table>
<thead>
<tr>
<th>Morphological Relations (MorphoSem)</th>
<th>Syntactic Relations (incl. SyntacticoSem)</th>
<th>Lexical Semantics Relations</th>
<th>Conceptual Relations</th>
<th>Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derivational (2003) e.g. build-builder</td>
<td>Minimal subcatz frames + * thematic role * + selectional restriction like relations in Derivational links (2007)</td>
<td>synonymy antonymy meronymy attribution</td>
<td>Temporal, cause etc. Instances (distinguished as such in 2006)</td>
<td></td>
</tr>
</tbody>
</table>

Strict POS distinction in organisation
Organised in synsents and relations among them

Noun Categorization in WN

- \{act, action, activity\}
- \{animal, fauna\}
- \{artifact\}
- \{attribute, property\}
- \{body, corpus\}
- \{cognition, knowledge\}
- \{communication\}
- \{event, happening\}
- \{feeling, emotion\}
- \{food\}
- \{group, collection\}
- \{location, place\}
- \{motive\}
- \{natural object\}
- \{natural phenomenon\}
- \{person, human being\}
- \{plant, flora\}
- \{possession\}
- \{process\}
- \{quantity, amount\}
- \{relation\}
- \{shape\}
- \{state, condition\}
- \{substance\}
- \{time\}

Where does this categorisation come from? Predication of nominal concepts studies
Noun/Entity Features in WN

Features in WN:
- perceptual features e.g. small, yellow, round
 → in glosses
- parts e.g. wings, legs etc.
 → meronymy relations
- affordances e.g. fly, sit etc.
 → in glosses (and multiple super-ordinates depending on structural or functional perspective e.g. ribbon-cloth, ribbon-adornment)

Adjective/Feature Organisation in WN

Organising principle: Antonymy
- descriptive
- reference modifying (old friend i.e. old friendship)
- social relation or function (e.g. presidential)
- temporal status (former)
- evaluative (e.g. good)
- action denoting (e.g. passive)
- epistemological (e.g. reputed) ...

Exception: relational ADJ → e.g musical instrument
Linked to Nouns they are related to
(same concept – similar or different root)

Where does this categorisation come from? Word-Association Tests
Action/Verb Categorisation in WN

Entailment

+ Temporal inclusion
 - Troponymy (Co-extensiveness)
 - limp-walk
 - snore-sleep
 - succeed – try
 - raise – rise
 - buy-pay
 - untie – tie
 - give-have
 - Backward Presupposition
+ Temporal inclusion

Criteria for such categorization?

VERB classes 15:
- bodily care and functions (e.g. faint)
- change (e.g modify - diff subclasses of change e.g. change state, change shape, etc. + troponymy of these)
- cognition (e.g. judge)
- communication (e.g. beg)
- competition (e.g. campaign, fight)
- consumption (e.g drink)
- contact (troponyms of few base verbs : fasten, attach, cover, cut, touch, hold)
- creation (e.g. print, illuminate, shew...)
- emotion (e.g. fear)
- motion (make movement: e.g. shake, travel – locomotion e.g. run
- perception (e.g. watch)
- possession (e.g. hold, rip)
- social interaction (e.g. franchise)
- weather verbs (e.g rain)

=> states (suffice, belong, resemble – they share no sem props as others above they just refer to states – small sem clusters and org sim to adj)
WN evolution line

- initial aspiration to simulate how children acquire Language (how mental lexicon works)
- NLP applications (WSD, IR, etc.)
- Recently: entailment, emotion recognition...
 - Yago (Suchanek 2007): fact inclusion in WN from Wikipedia
 - WN Affect (Strapparava 2006): label WN affective synsets as

 Emotional (e.g. anger), non-emotional affective e.g. mood, non-affective mental state (e.g. confusion), personality trait (e.g. competitive), behaviour (e.g. cry), attitudes (e.g. skepticism), physical or bodily states/feelings (e.g. pain, pleasure etc.)

Another Example: ConceptNet

![ConceptNet Diagram](image)
Verbal and Non Verbal Symbiosis in LRs

- Types:
 Multimedia Thesauri (e.g. Benitez et al. 2000)
 Multimedia Ontologies (e.g. Zinger 2005 – Ontolmage)
 Multimedia Taxonomies (e.g. Hauptmann 2007 – LSCOM)
 Multimedia Corpus (e.g. Pastra et al. 2010 – POETICON corpus)
 Labeled Image Databases (see review in Torralba 2011)

- Long History
 Ad hoc links of various types in AI systems since the late seventies (see review in Pastra and Wilks 2004)

Verbal and Non Verbal Symbiosis in SLRs

- Large scale object recognition using SLRs:

 The ImageNet Case (www.image-net.org)

 14+ Million Images manually indexed to ~ 21K WN Synsets

 ~ 150K Images have bounding box around the object of interest

 Images linked to Synsets at any level of the taxonomy; inheritance applies.
Verbal and Non Verbal Symbiosis in SLRs (2)

- Dang et al. 2010:
 Use of semantic hierarchies in Object recognition for:
 → Going large scale
 → Filtering visual similarity with semantic similarity
 → Use hierarchical cost in miss-classification error metrics

- Russakovsky et al. 2010:
 Extending WN noun synsets with visual attribute information (colour, shape etc.) → 384 synsets x 25 images per synset x 20 attributes annotated per image

The Cognitive Underpinnings of SLRs

- From Semantic Networks to Semantic Memories
 → What is a Semantic Memory?
 → Which applications need a Semantic Memory?

- How could Neuroscience inform SLR development?
 → Some important findings
 → The Minimalist Grammar of Action

- A Case-Study: The PRAXICON Semantic Memory
 → The structure of the PRAXICON
 → Concepts and relations in the PRAXICON
 → Examples
Semantic Memories

• Long term Memory (see Tulvig 1972)

 ➔ episodic (tied to specific learning experiences)

 ➔ semantic (general knowledge of the world, and related generalisation and reasoning abilities - see also Quillian 1968 on semantic networks)

 ➔ procedural (related to single action & action sequence learning, created through repeated learning)
Semantic Memories (2)

• Issues

 → type of knowledge stored

 → structure of memory space

 → use/activations (in memory search, retrieval, decision making)

Theories on Semantic Memory

Many theoretical accounts on structure & neural basis of SM (cf. extensive reviews in Kiefer and Pulvermueller 2012, McNorgan et al. 2011, Meteyard et al. 2012)

(1) Concepts are flexible, distributed representations; they comprise modality-specific conceptual features (latter stored in distinct sensorymotor brain areas) [Kiefer and Pulvermueller, in press]

(2) Much of the semantic memory content is related to perception and action and is represented in a brain region that overlaps with or corresponds to regions responsible for perception and action (Patterson et al. 2007)
Basic Level Categories (1)

- **Verbal Categorization:**
 Basic Level = category of maximum information gain for similarity-based categorisation (category distinctive enough and homogeneous) (Rosch et al. 1978)

 - *Most general categories whose members:*
 - possess significant numbers of attributes in common
 - participate in common motor sequences
 - have similar shapes (identifiable from averaged shapes of members of the class)
 - *Most inclusive categories:*
 - For which an image as a whole can be formed

Basic Level Categories (2)

- **Basic Level advantage = faster and more accurate categorisation at that level** (Jolicoeur et al. 1984)
 - not confounded by:
 - word frequency, length of word, joint image-word frequency, order of word learning...

- Literature on basic level effects when recalling information from semantic memory (in healthy subjects and patients of e.g. semantic dementia, Alzheimer, PTSD);
 - theories on activation of concepts in semantic memory: e.g. Rogers and Patterson 2007
The mechanism by which conceptual knowledge structure results in a basic-level advantage depends upon the pattern of generalization fostered by conceptual representations as the network learns to name (Rogers & McClelland, 2004).

(a) the more frequent the label, the more quickly and strongly it will become activated, all else being equal; and
(b) these frequency effects interact with the similarity structure of the semantic representations, so that (again, all else being equal) names are more slowly acquired and more difficult to activate when they apply across sets of items with very different representations, or there are items with different names that have very similar representations. Exemplars of basic-level categories are represented as similar to one another and as distinct from other items, and so basic-level names get the most benefit and the least interference from similarity-based generalization.
Theories on Semantic Memory (2)

How could it be implemented?

McClelland → neuroscience evidence suggests SM to be implemented as a separate memory not subsumed to episodic memory. Suggestion that hippocampal formation and the neocortex form complementary learning system. Former facilitates auto and hetero-associative learning which is used to reinstate and consolidate gradually learned info in the neocortex.

Semantic Memory & Language

Traditional representation of semantic knowledge through:

• Semantic Networks (hierarchical or non) (see Collins and Quillian 1969, Collins and Loftus 1975) and/or Feature Bundles

NOTE:

• all such knowledge is represented through LANGUAGE only, and carries all idiosyncrasies of language...(i.e. the semantic gap to the sensorimotor space lurks behind these resources)
A number of knowledge bases around (of different types):

- WordNet (hierarchical lexical resource) (Fellbaum 1998)
- Common sense knowledge bases (e.g. ConceptNet, CYC) etc.

A number of cognitive architectures with recently incorporated semantic memory modules:

- SOAR (Laird et al. 2009)
- ACT-R (Anderson et al. 2004)
- ICARUS (Langley 2009)

Common ASSUMPTION in such networks that agents have:

(a) sensorimotor experiences related directly or indirectly to what the language representations denote, and

(b) mechanisms for performing such link between language, perception and action

Aka: These modules/resources are NOT embodied, they are tied to language idiosyncrasies and lack structure that will unify language-perception-action.

Note: linking robots/intelligent systems to the web and interconnecting the knowledge they acquire through a cloud, can only be useful if...
Why Needed for Artificial Agents? (1)

Currently, robots have episodic and procedural memory ONLY

ONE SHOT learning ← need for Generalisation

- Semantic memories (SM) in Robots usually generated directly by perceptual systems (for object/action recognition) ← reasoning?
- Sometimes indirectly present through association strength information in episodic memory

We envision: Self-exploration models for gathering information, input to episodic/procedural memory, and then updating of Semantic Memory → generalization

Why Needed for Artificial Agents? (2)

Currently, intelligent systems have disembodied semantic memories...

Link with Perception and Action (sensorimotor representations) will allow:

- their use in embodied cognition applications (robotics, human-robot interaction etc.) and large scale object/action recognition
- investigation of semantics and language (and in particular verbal categorization) from a cognitive perspective that may open up new directions in language research itself
Findings in Neuroscience

On the tight link between Language – Perception – Action:

- **Mirror neurons**: action perception and production activate the same brain areas
- **Visuomotor neurons**: visual object perception and action production tightly connected
- **Broca’s area role**: the neural locus of (among others) language and action perception and production; suggestions for common syntactic (hierarchical and compositional) processes in language and action

Grammars for Action

- **Kirsch, 1964**: suggested a grammar of drawings analogous to text grammar;
- **Gregory 1974**: suggested grammar of vision analogous to language grammar;
- **Lashley 1974**: suggested that syntax may apply not only to language but also to other forms of behaviour, such as goal directed action

........

- **Fadiga 2005, 2009, 2011**: supramodal syntax hypothesis and experimental evidence that Broca’s area is the neural locus of (among others) language and action perception and production; suggestions for common syntactic (hierarchical/dependency-based and compositional) processes in language and action
The minimalist grammar of action

The first generative grammar of action that employs the structure-building operations and principles of Chomsky’s Minimalist Programme as a reference model

The grammar is based on a number of basic findings in experimental research, and in that sense it has a biological basis. It provides for an action-centric, embodied representation in SLRs.

Action Constituents (1)

Tool complement (t): the effector of a movement, this being a body part, a combination of body parts or the extension of a body part with a graspable object used as a tool. Syntactic feature.

- **Grasping with pliers vs. grasping with tweezers**

- **grasping a pencil with the hand vs. grasping a glass with the hand**
Action Constituents (2)

Goal\(^{(g)}\): the final purpose of an action sequence of any length or complexity. Inflectional feature!

1. **Same movement type, same tool and affected object, but different goal:**
 - *grasping a pencil in order to displace it* vs. *grasping a pencil in order to write*;

2. **Same movement type, different tool or affected object, same goal:**
 - *grasping an apple to displace it* vs. *grasping a cube to displace it*;

3. **Final goal of an action structure can be predicted from its first subactions**

The minimalist grammar of action (1)

Action Grammar Terminals: The simplest actions, i.e. perceptible movements carried out by an agent to achieve a goal, which have (one or more) body part tool-complements and no object-complements. Action terminals are further distinguished from each other through their perceptible motor features such as speed, force and direction.

Action Grammar Non-Terminals: These are perceptible action phrases, that consist of action terminals (or other non-terminals) in certain temporal configuration; they may have both tool-complements and object complements. They involve interaction with objects beyond one’s own body or with other agents, for attaining a particular goal/task.
The minimalist grammar of action (2)

Production Rules

4 \[A'' \rightarrow g A']

3 \[A' \rightarrow (m) A'

2 \[A' \rightarrow A' (o_c)

1 \[A' \rightarrow A t_c

Features:
- **Tool** Complement (t_i)
- **Affected Object** Complement (o_i)
- **Physical Space** Modifier (m)
- **Goal** Modifier (g)

Minimalist operators driven by Features:
Merge and Move

The operators drive the application of the rules bottom-up

Effects/Results \(\rightarrow\) the ‘static fingerprints’ of actions...

Action Grammar Example

\[A''\text{(grasp with hand}_i\text{, knife to slice)}\]

\[A''\text{(grasp with hand}_i\text{, knife)}\]

\[A''\text{(extend hand}_i\text{, to i)}\]

\[A''\text{(enclose with hand}_i\text{, knife)}\]

\[A''\text{(enclose with hand}_i\text{, knife)}\]

\[A''\text{(enclose with hand}_i\text{, knife)}\]

28
Let’s play with...Knots

Action-Constituents

MOVEMENT_TOOL_AFFECTEDObject_GOAL

Grasp_with Hand_Spoon_toStir%movement

Action-tool Hand%entity
Action-obj Spoon%entity
Action-Goal Stir%abstract

Movements are complex concepts: they have 3 inherent constituents that affect the execution of the motor program.
Conditions for distinguishing a new action concept

Motor Program Generators

Grasp_with X_Y_toStir %movement

Action-related concepts

Family of generators

Grasp_with X_Y_toStir

Grasp_with Hand_Y_toStir

Grasp_with X_Spoon_toStir

Grasp_with Hand_Spoon_toStir

Has partial instance

Has partial instance

Has Full instance
Action-related concepts

Family of generators (2)
Stir_with X_Y_toStir

Stir_with Spoon_Y_toStir
Has partial instance
Has partial instance
Stir_with X_coffee_toStir
Has Full instance
Stir_with Spoon_coffee_toStir

Action-related concepts

Family of generators (3)
The PRAXICON

- PRAXICONs: From Liepman’s (1908) input/output motor representations stored in memory, to...embodied-concept representations perceived and stored in memory for behaviour generation and understanding

The PRAXICON is

a) Action/Sensorimotor-centric SLR (Minimalist Grammar of Action used)

b) With Concept-Specificity indication (Basic Level Theory and first ever algorithm)

c) Driven by Neuroscience findings in all Knowledge Representation Decisions
(tighten with right hand wing nut)

(goal: tighten)

A ` 3

(tempConj: sequ)

A ` 1 E ``

(action-object)

E ``

(action-tool)

A1

grasp

right hand

wing nut

A ` 2b

(turn with right hand wing nut)

A ` 2 E ``

(action-object)

E ``

(action-tool)

A2

grasp

right hand

wing nut

A ` 1b

(grasp with right hand wing nut)

A ` 1

(grasp and turn with right hand wing nut)
PRAXICON Structure (1)

- **Concepts** (nodes – multi-representational)
- **Relations** (edges – labeled, mostly bidirectional)

→ One concept may have many relations to many concepts
 BUT there is only one relation linking two specific concepts

→ Some relations are more important for a concept than others;
 they are denoted as ‘inherent’ relations

“Do you want to tighten the nut instead of the wing nut?”
PRAXICON Structure (2)

Concepts: Characteristics

TYPE: entity, movement, feature, abstract
STATUS: constant, variable, template
PRAGMATIC STATUS: literal, figurative
SPECIFICITY LEVEL: Basic Level, Superordinate, Subordinate

Abstract concepts – compare:
Poverty vs. Cutlery
Cutting instrument vs. knife vs. butterknife

PRAXICON Structure (2)

Relations: a finite set

<table>
<thead>
<tr>
<th>ACTION_AGENT</th>
<th>HAS_ANTHROPOGENIC_EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTION_GOAL</td>
<td>HAS_MEASUREMENT_UNIT</td>
</tr>
<tr>
<td>ACTION_OBJECT</td>
<td>HAS_MEASUREMENT_VALUE</td>
</tr>
<tr>
<td>ACTION_RESULT</td>
<td>HAS_MEMBER</td>
</tr>
<tr>
<td>ACTION_TOOL</td>
<td>HAS_MEASURE</td>
</tr>
<tr>
<td>ASPECT_CONCEPT</td>
<td>HAS_NATURAL_EFFECT</td>
</tr>
<tr>
<td>COMPARED_WITH</td>
<td>HAS_PART</td>
</tr>
<tr>
<td>ENABLES</td>
<td>HAS_PARTIAL_INSTANCE</td>
</tr>
<tr>
<td></td>
<td>HAS_SHAPE</td>
</tr>
<tr>
<td></td>
<td>HAS_SIZE</td>
</tr>
<tr>
<td>MORE</td>
<td>HAS_SPEED_RATE</td>
</tr>
<tr>
<td>LESS</td>
<td>HAS_STEP</td>
</tr>
<tr>
<td>METAPHOR_OF</td>
<td>HAS_TEMPERATURE</td>
</tr>
<tr>
<td>PRODUCER_OF</td>
<td>HAS_TEXTURE</td>
</tr>
<tr>
<td>TYPE_TOKEN</td>
<td>HAS_TIME_PERIOD</td>
</tr>
<tr>
<td></td>
<td>HAS_VISUAL_PATTERN</td>
</tr>
<tr>
<td></td>
<td>HAS_VOLUME</td>
</tr>
<tr>
<td></td>
<td>HAS_WEIGHT</td>
</tr>
<tr>
<td></td>
<td>HAS_WIDTH</td>
</tr>
</tbody>
</table>
Relations: Intersection

PRAXICON Structure (3)

- Black and White
- Intersection
- Black
- White
- "black and white"

PRAXICON Structure (3b)

- Dalmatian dog
- Intersection
- Black
- White
- "black and white"

Comparing "black and white" vs. "red", "black"...

It's a label/adjective that does not correspond to a single feature concept but instead to a whole intersection structure between concepts.
Close with hand the fan

Relation Chain

“closed fan”

fan
Has_condition
closed

Why is such representation important?
Consider: “the fan is oblong”
So, passive participles lexicalize systematically relation chain structures
“pork”, “χοιρινό”

pig Aspect-concept food

Hold_withX _theY Has_force tight

“This could correspond to ‘clench’, ‘grip’, ‘tighten’ etc.”
PRAXICON Structure (5)

Relations: Intersection

- Wealth: "πλούτος"
- Young: "παιδί"

Semantic Memory Activation in the PRAXICON

This could correspond to ‘clench’, ‘grip’, ‘tighten’ etc.
PRAXICON suite of resources and tools

The PRAXICON Semantic Memory, its visual exploration interface (GUI) and the integrated language analysis and reasoning tools

In two forms:
- as a web service (database and game)
- as a downloadable for local installation.

Contents:
- Embodied WordNet - Lexical Database (more than 100K concepts and relations) - Cognitive Experiments (5K)
- Corresponding visual representations from the ImageNet database.

From POETICON to...POETICON++

From Jan 2008 to Dec 2015

POETICON: The Poetics of Everyday Life
(2008-2011)

Grounding Resources and Mechanisms for Artificial Agents

POETICON++: Robots need Language
(2012-2015)

A computational mechanism for behaviour generalisation & generation in robots

Visit: www.poeticon.eu
Supplementary Material

http://www.csri.gr/downloads/SLRs.html
- Detailed Bibliography
- Videos shown in the tutorial
- Booklet with detailed profiling of SLRs (pdf)